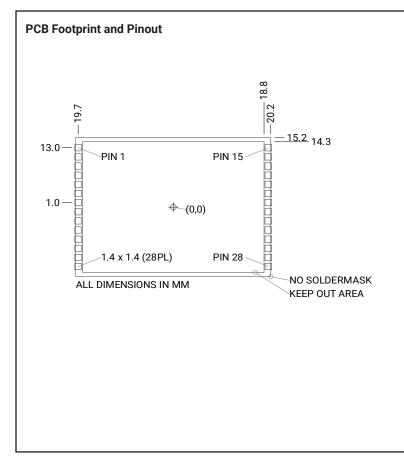


Preliminary Product Brief

Overview

The **M1493 Node Transceiver** connects an OEM device to an locast network. It supports fixed and mobile nodes, bidirectional communications, and all **node availability** values. The M1493 enables a wide range of applications ranging from sensors requiring a multi-year battery life to mobile alerting units requiring sub-second latency.

The M1493 is a complete locast node transceiver, soldering directly to a host PCB and interfacing with a local microcontroller using NXI. The unit requires a 1.8V logic interface, a 2.1 - 4.2 VDC supply, and an antenna. The M1493 autonomously performs all network related tasks and can roam between systems. Its RF and DSP performance enable sector connection and reliable communication even when the nearest base transceiver is 15-20 miles away.


For mission-critical IoT, the M1493 delivers high value, low energy consumption, and mission-critical reliability in urban, rural, and industrial environments.

Applications

- Patient Monitoring and Clinical Alarms
- Public Safety Dispatch and Alerting
- Public Works and Utilities
- Fleet Vehicle and Asset Tracking
- Public Transportation Systems
- · Perimeter Security
- Environmental and Water Monitoring
- Mining and Pipeline Management
- Oil Field Monitoring
- Radiation Monitoring
- Rail and Shipping Container Tracking
- Animal Tracking
- Agriculture

CriticalResponse

Copyright 2021, Critical Response Systems, Inc. All Rights Reserved. This product is covered under one or more patents. See criticalresponse.com For more information, please contact info@criticalresponse.com.

Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 14	Name GND VCC SDA SCL CREQ CACK ATTN /RESET TMARK S1 S2 S3 VCC GND GND VCC VCC N/C N/C N/C N/C N/C	Direction GND VCC I/O I I O O O O V C GND GND V C C V C C N/C N/C N/C N/C N/C	Description Ground 2.1 - 4.2 VDC NXI I ² C Data NXI I ² C Clock NXI Request NXI Acknowledge NXI Attention NXI Module Reset NXI Time Mark Status Bit 0 Status Bit 1 Status Bit 2 2.1 - 4.2 VDC Ground Ground 2.1 - 4.2 VDC 2.1 - 4.2 VDC 2.1 - 4.2 VDC No Internal Connection No Internal Connection No Internal Connection No Internal Connection No Internal Connection No Internal Connection No Internal Connection
16	VCC	VCC	2.1 - 4.2 VDC
19	N/C	N/C	
20	N/C	N/C	No Internal Connection
24	N/C	N/C	No Internal Connection
25 26	GND GND	GND GND	Ground Ground
20 27	ANT	GND I/O	Antenna
28	GND	GND	Ground

Transmitter

Frequency Range: 896 to 902MHz Emissions: 7K60FXD Transmission Mask: Parts 22, 24(D), 90, and 101 Power: Variable, +14dBm to +30dBm (at port)

Receiver

Frequency: 929 to 942MHz Selectivity 30dBc @ ±12.5KHz, Typical Sensitivity: -120dBm

Capabilities

8128 byte maximum datagram size Precise network time (NXI TMARK ±21 μS) Primary address plus 16 multicast addresses Secure over-the-air configuration Mobility and Secure Roaming

Interface

Air: locast v3 Host: NXI v3 (1.8V CMOS) Antenna: UMCC (EFJ 128-0711-201)

Physical

Size: 30 x 40 x 4mm Weight: 15g

Electrical

VCC: 2.1 to 4.2VDC Static Current: < 0.1 μA Idle Current: 8 μA Receive Current: 11mA Transmit Current: 120mA - 490mA

Environmental

Temperature: -40°C to +85°C Humidity: 10 to 90% Non Condensing

CriticalResponse